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ORIGINAL ARTICLE

Machine learning derived genomics driven prognostication for acute
myeloid leukemia with RUNX1-RUNX1T1
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Shruti Chaudharya, Gaurav Chatterjeea, Prashant Tembharea,b, Maya Prasadb,c, Nirmalya Roy Moulikb,c,
Anant Gokarnb,d, Avinash Bondab,d, Lingaraj Nayakb,d, Sachin Punatkarb,d, Hasmukh Jainb,d,
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ABSTRACT
Panel based next generation sequencing was performed on a discovery cohort of AML with
RUNX1-RUNX1T1. Supervised machine learning identified NRAS mutation and absence of muta-
tions in ASXL2, RAD21, KIT and FLT3 genes as well as a low mutation to be associated with favor-
able outcome. Based on this data patients were classified into favorable and poor genetic risk
classes. Patients classified as poor genetic risk had a significantly lower overall survival (OS) and
relapse free survival (RFS). We could validate these findings independently on a validation
cohort (n¼ 61). Patients in the poor genetic risk group were more likely to harbor measurable
residual disease. Poor genetic risk emerged as an independent risk factor predictive of inferior
outcome. Using an unbiased computational approach based we provide evidence for gene
panel-based testing in AML with RUNX1-RUNX1T1 and a framework for integration of genomic
markers toward clinical decision making in this heterogeneous disease entity.
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Introduction

Acute myeloid leukemia (AML) with t(8;21)(q22;q22)
that results in the RUNX1-RUNX1T1 chimeric gene
fusion is one of the commonest subtypes of AML. It is
characterized by a distinct morphology and a unique
immunophenotype and is thus recognized as a spe-
cific entity amongst ‘AML with recurrent genetic
abnormalities’ [1]. Traditionally, this AML has been rec-
ognized as having a favorable outcome as evident by
superior survival rates when compared to intermediate
and poor cytogenetic risk AMLs [2]. Unfortunately, the
treatment outcome in these cases is not homoge-
neous as evident by relapse in a significant number of
patients despite achievement of morphological com-
plete remission (CR) [3,4]. In fact, studies claim that
only half the patients of AML with RUNX1-RUNX1T1

get cured [5,6]. This heterogeneous outcome has been
explained, in part, by cooperating somatic mutations
in genes involved in signaling pathways such as FLT3
and KIT [7].

In the last few years, largely due to next generation
sequencing (NGS) technologies, we have identified som-
atic mutations affecting diverse cellular pathways in AML
[8]. Some of these mutations are clinically relevant affect-
ing prognosis or are amenable to targeted therapy.
Somatic mutations have been identified in nearly 90% of
AML with t(8;21) and commonly include genes encoding
for chromatin modifiers (e.g. ASXL1, ASXL2, EZH2,
KDM6A), cohesin complex (e.g. RAD21, SMC3, SMC1A)
and signaling pathways (e.g. KIT, FLT3, NRAS) [4,9].
Whereas a general consensus exists amongst researchers
that the above sets of genes are recurrently mutated in
AML with RUNX1-RUNX1T1, an accurate prognostication
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scheme that guides a treating physician is largely lack-
ing. It is imperative that better approaches be developed
so that we can identify patients who are at a high risk
of relapse in this rather common subtype of AML.

Machine learning (ML) is a subset of artificial intelli-
gence that holds promise in deciphering complex gen-
omic datasets. ML has been used to develop
algorithms for diverse applications such as identifica-
tion of regulatory regions in the genome to prediction
of cancer susceptibility, recurrence and survival
[10,11]. ML has also been recently used for prediction
of drug response in AML based on gene expression
profiles as well as discovery of novel antibiotics
[12,13]. We have recently developed a supervised ML
based algorithm for prognostication of AML with
mutated NPM1 based on the underlying genomic data
[14]. To decipher the clinical significance of the large
numbers of genetic variables we used an unbiased
computational approach and identified that NPM1
mutation type and corrected NPM1 variant allele frac-
tion (VAF), presence of DNMT3A R882 mutation, FLT3
internal tandem duplication VAF and IDH2 mutations
were clinically relevant. Based on these ML derived
variables we developed a scoring system. The genetic
score could classify AML with mutated NPM1 into
three classes with vastly different outcomes.

Given the heterogeneity in treatment outcomes
that is observed in AML with RUNX1-RUNX1T1 we
questioned if such ML based approaches can be
applied to AML with RUNX1-RUNX1T1. In this manu-
script, we develop a ML based genomics driven prog-
nostication model for AML with RUNX1-RUNX1T1 and
demonstrate that this model correlates with measur-
able residual disease (MRD) and clinical outcome.

Methods

A. PATIENT DETAILS:
a. Patient Accrual: The study was cleared by the

institutional ethics board (IEC III Project 163
and IEC III Project 900613). We accrued a
total of 131 patients of AML with RUNX1-
RUNX1T1. These patients were accrued over a
7-year period from March 2012 to April 2019.
Diagnosis, immunophenotyping and cytogen-
etic analysis were performed as previously
described [3].

b. Patient Treatment and Evaluation of
Outcome: Patients were divided into a discov-
ery cohort (n¼ 70) and an independent valid-
ation cohort (n¼ 61). All patients were treated

with conventional induction ‘3þ 7’ chemother-
apy consisting of daunorubicin (60mg/m2

D1-D3) and cytarabine (100mg/m2/day D1-D7).
For the validation cohort, 13 out of 61 patients
had baseline fungal pneumonia or multidrug
resistant bacterial colonization and were treated
with oral metronomic chemotherapy to stabilize
the patient prior to intensive ‘3þ 7’ chemother-
apy. Complete remission (CR), overall survival
(OS) and relapse free survival (RFS) were calcu-
lated as previously described [3,14,15]. One out
of 13 patients not achieving morphological CR
was treated with palliation and the rest were
treated with conventional therapy, at discretion
of the treating physician.

B. GENETIC TESTING ON DIAGNOSTIC SAMPLE:
a. Cytogenetics: Only patients who were con-

firmed to have RUNX1-RUNX1T1 by conven-
tional karyotyping and/or fluorescence in-situ
hybridization (FISH) were included.

b. Panel Based NGS and Data Analysis: Details of
the single molecule molecular inversion probe
(smMIP) based myeloid sequencing panel and
bioinformatics approaches used to analyze this
dataset are as previously described in detail
(please see supplementary methods) [14].

c. Machine learning based genetic score: We
developed a supervised ML based approach
for identification of prognostic variables most
likely to influence outcome in AML with
RUNX1-RUNX1T1 as described previously [14].
Additional details pertaining to ML can be
seen in the Supplementary Methods that
accompanies this manuscript. Based on the
results of the ML model we scored each vari-
able as ‘-1’ if the results were predictive of an
unfavorable outcome and ‘þ1’ if otherwise. A
sum of these scores was finally derived to
generate a final score. Based on this final
score patients were classified into favorable
and poor genetic risk (GR).

C. MEASURABLE RESIDUAL DISEASE ASSESSMENT
USING MULTIPARAMETRIC FCM (FCM-MRD):
FCM-MRD was detected using a two tube 10 color
assay as described previously by our group [3].
Patients were called as FCM-MRD negative if they
were negative on two consecutive MRD time
points (post induction and post consolidation).
Everyone else was MRD positive.

D. CORRELATION OF ML DERIVED GR WITH FCM-
MRD AND TREATMENT OUTCOME:
Chi squared test was used to correlate FCM-MRD
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with ML derived GR classes. The impact of GR
defined classes was also evaluated against OS and
RFS using Kaplan–Meier technique and log-
rank test.

Results

Table 1 is a summary of clinical and laboratory param-
eters of the entire cohort.

A. PATIENT DETAILS:

The median follow-up for the entire cohort (131
patients) was 27.6months. The median overall survival
(OS) was 30.7months (95% CI: 23.0–38.4months) and
the median relapse free survival (RFS) was 32.9months
(95% CI: 27.7–38.1months). Out of 131 patients only 4
underwent allogeneic bone marrow transplantation.
Due to small numbers their outcome was not different
from the rest with respect to OS (p¼ 0.25) or RFS
(p¼ 0.9). These patients are therefore not considered
separately. The clinical and laboratory parameters of
the discovery and validation cohorts can be seen in
Supplementary Tables 1 & 2 respectively.

B. GENETIC TESTING ON THE DIAGNOSTIC SAMPLE:
a. Cytogenetics and gene mutations: Details of

conventional karyotyping and FISH can be
seen in supplementary data accompanying
this manuscript. At least one somatic muta-
tion was detected in 85.5% of all patients
(median coverage: 983.5, range: 402–2793X).
An overview of these mutations can be seen
in Figure 1. Supplementary Figure 1 high-
lights the frequencies of commonly occurring
mutations seen in our cohort.

b. Machine Learning Based Modeling:
Performance characteristics of ML model as
well as results of feature selection can be
seen in supplementary methods
(Supplementary Tables 3–5 and
Supplementary Figure 2) accompanying this
manuscript. Based on the ML modeling on
the discovery cohort, mutations in FLT3,
NRAS, ASXL2, RAD21, KIT genes as well as
mutation burden (�2 as high mutation bur-
den) were determined as important variables
likely to predict outcome.

c. Machine Learning Derived Genetic Score:
High mutation burden, mutations in FLT3,
RAD21, ASXL2 and KIT genes were associated
with an inferior prognosis and assigned a
negative score whereas mutations in NRAS

were associated with a favorable outcome
and a positive score if present. These features
were used to generate a scoring system as is
seen in Figure 1. Based on the prognostic
impact of these variables a score was allotted
to each feature [14] the sum of which
resulted in classification of patients into favor-
able (score �4) and poor genetic risk (score
�3). In the discovery cohort, patients classi-
fied as poor genetic risk were associated with
inferior OS and RFS (Supplementary Table 1
and Supplementary Figure 3). We reconfirmed
the clinical relevance of these findings by an
independent validation on a cohort of pediat-
ric RUNX1-RUNX1T1 rearranged AML
(Supplementary Table 2 and Supplementary
Figure 4).

C. MEASURABLE RESIDUAL DISEASE ASSESSMENT
USING MULTIPARAMETRIC FCM (FCM-MRD):
The presence of FCM-MRD was significantly asso-
ciated with inferior OS and RFS (Supplementary
Figure 5).

D. CORRELATION OF ML DERIVED GR WITH FCM-
MRD AND TREATMENT OUTCOME:
We observed a strong correlation of ML derived
genetic risk classes with FCM-MRD where cases
which were classified as poor genetic risk were
more likely to be MRD positive (Supplementary
Figure 6). Lastly ML derived GR based risk classes
were highly predictive of outcome as seen in
Figure 1 and Table 1. The clinical relevance of
individual components of the ML derived scoring
system can be visualized in Supplementary
Figure 7.

Discussion

In the last decade several studies have analyzed the
prognostic relevance of signaling pathway mutations
in core binding factor AML as reviewed by Boissel
et al. [16]. However, there is little consensus amongst
investigators with respect to clinical relevance of these
mutations. This could be attributed to various reasons,
such as technical issues associated with low sensitivity
assays like sanger sequencing. Some investigators
have indicated that allelic abundances of mutations
are important [9,17]. Others have indicated that even
within a single gene, mutational hotspots such as KIT
D816 [18] or FLT3-TKD [19] may have different prog-
nostic connotation in core binding factor AML. Krauth
and colleagues indicated mutation burden may be an
additional determinant of outcome [20]. Studies
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Table 1. Prognostic significance of machine learning derived genetic risk in AML with t(8;21).
Parameter Observation (%)

Demographics:
Age Range: 2–60 years;

Median: 20 years
Sex Male:Female : 2.2:1

Clinical characteristics:
Total number of patients accrued 131
Cases not in morphological remission 13

Remission characteristics:
Complete remission (CR) 50
CR with incomplete hematologic recovery (CRi) 81

Bone marrow transplantation:
Patients who underwent BMT 04

Laboratory characteristics:
Blood counts at presentation
1. More than 50,000/mm3 08
2. Less than 50,000/mm3 123

Individual parameters of genetic risk score:
1. Mutation burden (�2) 53 (40.4%)
2. Any KIT mutation 44 (33.5%)
3. NRAS mutation 25 (19.1%)
4. RAD21 mutation 11 (8.4%)
5. Any FLT3 mutation 11 (8.4%)
6. ASXL2 mutation 17 (13%)

Classification according to genetic risk:
Favorable genetic risk (Fav GR) 63 (48.1%)
Poor genetic risk (Poor GR) 68 (51.9%)

Post induction flow MRD (n¼ 131):
MRD positive 58 (44.2%)
MRD negative 73 (55.7%)

Post consolidation flow MRD (n¼ 99):
MRD positive 13 (13.1%)
MRD negative 86 (86.8%)

Paired MRD analysis (n¼ 87):
Any MRD positive 46 (52.8%)
Dual time point MRD negative 41 (47.1%)

Univariate Cox analysis
Machine learning derived
genetic risk

Overall survival (OS) Relapse free survival (RFS)

HR (95% CI) p HR (95% CI) p

Favorable genetic risk 1 0.0001 1 0.0008
Poor genetic risk 3.5 (1.88–6.55) 2.5 (1.43–4.33)

Machine learning derived Overall survival (OS) Relapse free survival (RFS)

genetic risk HR (95% CI) p HR (95% CI) p

Favorable genetic risk Mean OS: 44.6 months;
95% CI (40.6–48.6 months),
Median OS: not reached

0.0001 Mean RFS: 37.7 months;
95% CI (32.8–42.6 months),
Median RFS: 72.6 months
95% CI (35.1–72.6 months)

0.0008

Poor genetic risk Mean OS: 29.6 months;
95% CI (23.7–35.6 months),
Median OS: 30.5 months; 95% CI

(16.0–42.1 months)

Mean RFS: 24.4 months;
95% CI (19.0–29.9 months),
Median RFS: 16.7 months;
95% CI (12.7–32.6 months)

Dual time point FCM-MRD Overall survival (OS) Relapse free survival (RFS)

HR (95% CI) p HR (95% CI) p

MRD Negative 1 0.01 1 0.01
MRD Positive 2.5 (1.16–5.50) 1.6 (0.87–3.18)
Dual time point FCM-MRD Overall survival (OS) Relapse free survival (RFS)

HR (95% CI) p HR (95% CI) p

MRD Negative Mean OS: 62.8 months;
95% CI (53.1–72.4 months),
Median OS: 74.1 months;
95% CI (74.1–74.1 months)

0.01 Mean RFS: 49.5 months;
95% CI (39.4–59.7 months),
Median RFS: 72.6 months
95% CI (29.2–72.6 months)

0.01

MRD Positive Mean OS: 52.9 months;
95% CI (40.3–65.4 months),
Median OS: not reached

Mean RFS: 43.0 months;
95% CI (30.3–55.7 months),
Median RFS: 23.5 months; 95% CI

(15.4–32.6 months)
Overall survival (OS) Relapse free survival (RFS)

Multivariate cox analysis HR (95% CI) p HR (95% CI) p

Dual MRD positive 1.6 (0.77–3.47) 0.202 1.3 (0.67–2.58) 0.41
Poor genetic risk 3.7 (1.69–8.08) 0.001 2.3 (1.17–4.60) 0.01

OS: Overall Survival; RFS: Relapse Free Survival; HR: Hazards ratio; CI: confidence interval; MRD: Measurable Residual Disease. FCM-MRD was assessed in 87 patients
in morphological CR (<5% blasts).
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employing high throughput sequencing technologies
have indicated that beyond signaling pathways the
mutational landscape of AML with t(8;21) may be
unique characterized by high frequencies of mutations
in genes encoding for cohesin complex and chromatin
modeling pathways [9,21]. As a result of lack of con-
sensus, current guidelines group AML with RUNX1-
RUNX1T1 as a single disease entity [22,23].

Instead of selecting individual genes, we analyzed
all commonly (>5%) occurring mutations in AML with
RUNX1-RUNX1T1 in an unbiased manner using a super-
vised machine learning algorithm. The threshold of
including mutations occurring at a frequency of >5%
(from a 50 gene panel) is chosen empirically. This is
keeping in mind a balance between applicability of
the model to AML with RUNX1-RUNX1T1 and inclusion
of nongeneralizable data (typically seen with rare
mutations). This will presumably prevent ‘overfitting’
into the dataset [24]. ML approaches allow us to iden-
tify interactions between data that are not readily

visible using legacy approaches. Our approach
enabled us to develop a scoring system based which
we could classify AML with RUNX1-RUNX1T1 into two
prognostic subgroups with different outcomes. In a
multivariate analysis this was found to be an inde-
pendently important predictor of outcome.

Based on these data, we propose a risk stratification
of AML with RUNX1-RUNX1T1 that incorporates som-
atic mutations in FLT3, NRAS, ASXL2, RAD21, KIT genes
as well as mutation burden. From data that has been
published previously we expected that KIT [18] and
FLT3 (exon 20) [19] gene mutations would be prog-
nostically relevant. In addition, based on scant pub-
lished data we also suspected that mutation burden
would influence outcome [20]. However, using AI we
could additionally infer the prognostic impact of NRAS,
RAD21, FLT3-ITD, ASXL2 mutations. The latter were not
expected from legacy data. Micol et al and other stud-
ies, have previously demonstrated a high frequency of
ASXL2 mutations in this subset of AML and possible

Figure 1. The above circos plot (A) highlights the spectrum of mutations and their interaction in AML with RUNX1-RUNX1T1.
Commonly occurring gene mutations are colored. The machine learning derived scoring system is described in (B). The
Kaplan–Meier plot in the top right section (C) shows the clinical impact on overall survival (OS) and for relapse free survival (RFS,
D), lower right).
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inferior outcome [20,25]. Recently Ishikawa et al indi-
cated that only exon 17 mutations were prognostically
relevant in AML with RUNX1-RUNX1T1. In comparison,
we determined that all KIT mutations may be relevant
as determined by ML modeling. Cohesin gene muta-
tions have been associated with inferior outcome in
myeloid malignancies [26]. In our study, we identify
RAD21 mutations as a mutation associated with pos-
sible inferior outcome, especially in the context of ML
derived scoring system. NRAS mutations have been
described in AML with RUNX1-RUNX1T1, however, have
failed to demonstrate a clear survival advantage
[27,28]. We think, a more global approach which takes
into account the complex interaction of these muta-
tions rather than a simplistic evaluation as evident by
our scoring system is warranted for prognostication of
this seemingly homogeneous AML.

A disadvantage of our study could possibly be not
including recently described newer gene mutations
including ZBTB7A [29]. Nonetheless, our approach pro-
vides additional evidence for gene panel-based testing
in AML with RUNX1-RUNX1T1 and a general framework
for the integration of genomic markers toward clinical
decision making. The potential limitations of this study
include a retrospective analysis and a limited number
of patients. This machine learning derived genomics
score for AML with RUNX1-RUNX1T1 should be vali-
dated prospectively by other investigators.
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